Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal.

نویسندگان

  • Erick Reyes-Vera
  • Cristiano M B Cordeiro
  • Pedro Torres
چکیده

A highly sensitive temperature sensor based on an all-fiber Sagnac loop interferometer combined with metal-filled side-hole photonic crystal fiber (PCF) is proposed and demonstrated. PCFs containing two side holes filled with metal offer a structure that can be modified to create a change in the birefringence of the fiber by the expansion of the filler metal. Bismuth and indium were used to examine the effect of filler metal on the temperature sensitivity of the fiber-optic temperature sensor. It was found from measurements that a very high temperature sensitivity of -9.0  nm/°C could be achieved with the indium-filled side-hole PCF. The experimental results are compared to numerical simulations with good agreement. It is shown that the high temperature sensitivity of the sensor is attributed to the fiber microstructure, which has a significant influence on the modulation of the birefringence caused by the expansion of the metal-filled holes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and simulation of a highly sensitive photonic crystal temperature sensor based on a cavity filled with the distilled water

In this paper design and two dimensional (2D) simulation of a photonic crystal highly sensitive temperature sensor is presented. The 2D simulations are based on finite-difference time-domain (FDTD) method and are done using Rsoft software. The device is constructed using a cavity filled with the distilled water located in the center of the photonic crystal waveguide. The operation of the propos...

متن کامل

Salinity sensor based on polyimide-coated photonic crystal fiber.

We proposed and experimentally demonstrated a highly sensitive salinity sensor using a polyimide-coated Hi-Bi photonic crystal fiber Sagnac interferometer based on the coating swelling induced radial pressure. This is the first time to exploit fiber coating induced pressure effect for salinity sensing. The achieved salinity sensitivity is 0.742 nm/(mol/L), which is 45 times more sensitive than ...

متن کامل

Performance of Sagnac Interferometer with Loops Made of PCF and PANDA Fibers

Optical fiber Sagnac loop as a interferometer (SLI), is a useful component utilized in devices and systems of optical technology [1,2]. As of today, several components based on SLI, have been designed for applications of wavelength division multiplexing (WDM) filters and optical sensors, using conventional and photonic crystal fibers [3-6]. In an SLI, two interfering waves in an optical fiber l...

متن کامل

Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer.

A novel intrinsic fiber optic pressure sensor realized with a polarization-maintaining photonic crystal fiber (PM-PCF) based Sagnac interferometer is proposed and demonstrated experimentally. A large wavelength-pressure coefficient of 3.42 nm/MPa was measured using a 58.4 cm long PM-PCF as the sensing element. Owing to the inherently low bending loss and thermal dependence of the PM-PCF, the pr...

متن کامل

Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium.

The large temperature sensitivity of the Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium was experimentally demonstrated. The temperature sensitivities of the wavelength shift of the interferometer and the birefringence the fiber with indium were measured to be -6.3 nm/K and -3.3x10(-6) /K, respectively. The large temperature sensitivity of the fiber wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 56 2  شماره 

صفحات  -

تاریخ انتشار 2017